添加QQ号
3004901493
肿瘤细胞环境有着超越基因组的影响,正因如此,大规模“组学"数据将是未来细胞重编程的一个重要方面。虽然我们认为iPSC和ESC在功能上是相同的,但转录组、蛋白质组和表观基因组水平的深入研究将有助于阐明环境对重编程的影响。另外,在单个细胞中同时检测多个“组学",将能鉴定那些造成iPSC多能性差异的基础元件。
目前,细胞重编程领域普遍缺乏定量数据。实际上,文献中的重编程效率差异,可能更多的是由体细胞内部异质性造成的,而不是方法学上的问题。定量理解这样的异质性,可以帮助我们从细胞群体中区分出想要的细胞。
上海沪宇等人通过细胞重编程的两个状态,描述了异质性产生的基础。首先,OSKM转基因激活一系列随机事件,当这些事件达到“适当"条件时,细胞转变为第二个状态。这个状态会出现决定性的基因表达,此时转基因被沉默,细胞被重塑为多能性状态。在Buganim这个模型中,转基因激活与沉默之间的平衡,是细胞重编程效率低的重要原因。我们可以换一种途径进行重编程,激活或沉默非基因组的因子,将有望显著提高重编程效率。“组学"数据无疑能加深我们对这些因子的认识,帮助我们理解细胞重编程的必要条件和非必要条件。
在这些信息的基础上,我们可以同步细胞动态,在引入转基因时让大多数细胞处于*状态。已经有前期工作表明,重编程动态受到一些限速步骤的调控。比如,去除组蛋白乙酰化的一个抑制子,可以使体外重编程的效率达到几乎100%。此外,引入OSKM也会刺激甲基化等细胞过程,以维持内稳态。对于研究这些过程的动态而言,定量技术将特别有优势。FACS和拉曼光谱才刚开始用于细胞重编程的定量研究,就已经表现出了很大的潜力。
肿瘤细胞重编程受到公众关注,主要是因为它在疾病模拟和医疗保健中的应用。神经退行性疾病的患者特别能从这一技术中获益,因为生成神经元的iPS方案要优于其他细胞类型,而且患者神经元通常很难获取。目前,细胞重编程技术研究特定基因组突变引起的疾病,因为重编程会重设表观基因组。尽管有证据表明,iPS技术也能用来研究复杂基因组改变引起的疾病,但目前的模型一般不足以研究异常细胞网络或动态引发的疾病。
小鼠心肌肌钙蛋白Ⅰ(cTn-Ⅰ)ELISA Kit ELISA. 96T/48T
小鼠纤溶酶抗纤溶酶复合物(PAP)ELISA Kit ELISA. 96T/48T
小鼠纤连蛋白(FN)ELISA Kit ELISA. 96T/48T
小鼠细胞周期素D3(Cyclin-D3)ELISA Kit ELISA. 96T/48T
小鼠细胞周期素D2(Cyclin-D2)ELISA Kit ELISA. 96T/48T
小鼠细胞周期素D1(Cyclin-D1)ELISA Kit ELISA. 96T/48T
小鼠细胞色素C(Cyt-C)ELISA Kit ELISA. 96T/48T
小鼠细胞间粘附分子1(ICAM-1/CD54)ELISA Kit ELISA. 96T/48T
肿瘤细胞